Graph-based Prediction and Planning Network (GP3Net) for Scalable Self-Driving
in Dynamic Environments Using Deep Reinforcement Learning
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i « Dynamic graph: each traffic participant is a node, connected by their
interactions

ST networks to analyse individual movements (position, velocity,
acceleration)

* Edge encoder LSTM netwark analyses connections between nodes
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o L; 1 ‘ *  [CVAE to generate multimodal predictions for future trajectories with GMMs
Rampadil ol * Account for the prediction uncertainty using 2D Gaussian patches centered
I E on likely positions.
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Solution:
*  Maodel how the driving context can change in near future with uncertainties
« Enhance reinforcement learning based driving capability with better exploration of the driving scenario
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Ri= Troute + Thalt + Tvel + rpas + Thd + Tact + Tterm
Reward
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* llse a modified PPO algorithm with an entropy term for safe exploration
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[utperforms imitation learning models on standard CARLA benchmarks (urban, highway, mixed)
Adapts to different weather conditions, completing routes with fewer infractions
The average advantage: 3.85% in SR and 8% in DS with a low standard deviation of 1.5%
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Focus on initial phase: mastering route-following and avoiding collisions in various situations o
GP3Net paves the way for robust and adaptable AV navigation .
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Predicting future trajectories enhances safety measures in dynamic environments
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The videos of GP3Net can be found by scanning the (R code. &
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